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Metastability of a circular o-ring due to intrinsic curvature
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Abstract. An o-ring takes spontaneously the shape of a chair when strong enough torsion is applied in its
tangent plane. This state is metastable, since work has to be done on the o-ring to return to the circular
shape. We show that this metastable state exists in a Hamiltonian where curvature and torsion are coupled
via an intrinsic curvature term. If the o-ring is constrained to be planar (2d case), this metastable state
displays a kink-anti-kink pair. This state is metastable if the ratio α = C/A is less than αc(2d) = 0.66,
where C and A are the torsion and the bending elastic constants [1]. In three dimensions, our variational
approach shows that αc(3d) ' 0.9. This model can be generalized to the case where the bend is induced
by a concentration field which follows the variations of the curvature.

PACS. 05.90.+m Other topics in statistical physics and thermodynamics – 03.40.-t Classical mechanics
of continuous media: general mathematical aspects – 62.20.Dc Elasticity of solids

Consider a closed toroidal o-ring: Apply a torque at one
point while holding the opposite point fixed (see Fig. 1).
For small deformations, the shape of the o-ring relaxes
to its circular shape after the constraints are removed.
However, if the applied torque is larger than a threshold,
the o-ring takes spontaneously the shape of a chair. This
state is metastable, since no external torque is required.
Drawing a line with liquid paper on the o-ring shows that
torsion and curvature are unequally distributed along the
rod, since torsion is mainly concentrated on the two he-
lical parts of the metastable state. This is reminiscent of
the Euler instability [1] for a straight rod, but we show in
this paper that this metastable state exists for a circular
o-ring where curvature and torsion are locally coupled by
an intrinsic curvature term. The parameter of the model
is the ratio α = C/A, where C and A are the torsion and
bending elastic constants. For zero linking number [9], we
demonstrate that the critical value αc below which the
chair shape exists depends on the dimension of the space
where the o-ring is confined. In a two-dimensional geom-
etry, we find αc(2d) ' 0.66. In the non-planar case (3d),
our variational approach shows that αc(3d) ' 0.9.

These values are experimentally accessible with biopol-
ymers materials such as D.N.A. minicircles which are per-
manently bend for sequence dependent molecules [2–4]. In
this case, the salt concentration of the solution controls
the bending elastic constant so that α can be decreased
below its salt physiological value (α = 1.5). To deal with
situations where the bend is induced by small particles,
we generalize the o-ring model and we show that the local
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density follows the variations the curvature. Our model
is motivated by recent experiments on D.N.A. minicircles
where conformational changes are induced by histone like
proteins [5].

Such a metastable state is not observed if the o-ring is
not intrinsically circular, as for a rubber whose two ends
are glued together. The physical origin of this metastable
state is traced back to the existence of a threshold value
for the torsion applied from outside. Associated with this
threshold, there is a broken symmetry due to the intrin-
sic curvature c0 of the rod. In the local frame (e1, e2, e3)
embedded into matter, we write the energy as [2,6–8]
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where Ω = (Ω1, Ω2, Ω3) is the rate of deformation [1]
and s is the arclength. By definition, e3 is directed along
the tangent of the central fibre of the rod whose geo-
metric properties are described by the Serret-Frenet triad
(t, n, b). Equation (1) accounts for curvature, κ2 = Ω2

1 +
Ω2

2 , and torsion, Ω2
3 [1]. It also has a symmetry break-

ing term Ω1c0. By definition, ψ is the angle that makes
e1 with the osculating plane (see Fig. 1). Writing c0Ω1 =
c0κ cosψ shows that curvature and torsion are locally cou-
pled. Hereafter, we take c0 = R−1

0 , where R0 is the radius
of the undistorted o-ring. The ratio α = C/A is indepen-
dent of the aspect ratio of the o-ring [1] (α = 0.66 for
rubber).

The existence of the metastable state can be under-
stood by noticing that the physical triad experiences a
rotation of almost ±2π in each helical arcs. Since the cur-
vature is of the order of c0 in the two opposite circular
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Fig. 1. Case (C): The o-ring is circular. A torque is applied
perpendicularly to the neutral fibre as indicated by the ar-
row and zero torsion is imposed at the opposite point (shaded
sphere). If the torsion angle is sufficiently large, the o-ring re-
laxes to the metastable state. The picture corresponding to the
case (M) is a side photograph of an o-ring in the metastable
state where the nails indicate how torsion is distributed along
the rod. The inset shows the top view of the metastable state.
By definition, t,b,n are the tangent, the binormal and the
normal to the neutral fibre. The physical triad (e1, e2, e3) is
embedded into matter.

arcs closing the o-ring, untwisting the helices increases
the curvature energy at the two circular ends. Obviously,
the energy of the metastable state increases with the ratio
α = C/A for a given radius R0, so that there is a threshold
for α above which the metastable state disappears.

First, consider the 2d case, where the binormal b is
parallel to the Z axis. We choose a reference frame X,Y
such that the south and north poles of the o-ring in the
untwisted state are at (0,±R0), respectively. If the tangent
makes an angle φ with respect to the X axis, the curvature
is φ̇ = dφ/ds. Equation (1) is rewritten as
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ds ψ̇2 +Ac0

∮
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where ψ is the angle between e1 and the (X,Y ) plane.
The last term in equation (2) couples torsion, ψ, to curva-

ture, φ̇. It shows that the actual intrinsic curvature varies

0.0 2.0 4.0 6.0

6.0

4.0

2.0

0.0

Ψ1

Ψ
2

4.824.83

4.82
4.83

1.00

2.00
3.00

4.00

4.00
3.00

2.00

1.00

Fig. 2. Energy contour map of the o-ring for different values of
the torsion angles ψ1,2 imposed at the south and north poles,
respectively. This figure corresponds to the planar o-ring (2d
case). The circular o-ring has ψ2 = ψ1 = 0. The metastable
state corresponds to the two energy wells along the line ψ2 =
2π − ψ1 (α = 0.5).

as c0cos ψ. Obviously, ψ = 0, 2π are two physically indis-
cernible minimum energy solutions for the bending energy.
In the small α� 1 limit, we demonstrate that ψ(s) for the
metastable solution interpolates between these two values
(zero applied torque). However, as α increases, the jump
∆ψ experienced by ψ between the two circular arcs, where
ψ is almost constant, becomes smaller.

To obtain stationary solutions with circular constraints,
we add to the equation (2) two Lagrange multipliers∫

dsλ(s)(dx/ds − cosφ) +

∫
dsη(s)(dy/ds− sinφ),

so that x, y, φ have independent variations. Rescaling the
arclength by R0, stationary contours symmetric with re-
spect to the X = 0 plane (η = 0) are solutions of the Euler
equations

d

ds

[
φ̇− cos ψ

]
= λ sin φ

ξ2
0

d2ψ

ds2
= φ̇ sin ψ (3)

where the Euler equation for λ(s) shows that it is con-
stant. By dimensional analysis, ξ0 = α1/2R0 is a persis-
tence length for torsional deformations. For constant cur-
vature, φ̈ = 0, the torsion’s profile induced by an external
torque is exponential like and, therefore, short range. This
contrasts with the c0 = 0 case, where the profile is linear,
indicating thereby a long range perturbation. For the o-
ring, ξ0 set the width of the kink.

Figure 2 shows a three-dimensional contour plot of the
energy as a function of the two angles ψ1,2 imposed at the
north and south pole by an outside torque (α = 0.5).
For the boundary conditions we consider here, this plot
is symmetric with respect to the lines ψ2 = ψ1 and ψ2 =
2π − ψ1, where ψ1,2 are the angle between e1 and the
tangent plane for X = 0.
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Fig. 3. Shape of half of the o-ring for different values of
ψ1 = 2π − ψ2. All shapes are drawn for the same value of
the parameter α = 0.5. For cases A (circular o-ring), B, C,
D, E, one has: ψ1 = 3.140, 2.35, 1.57, 0.78, 0. For α = 0.5,
the metastable state (zero applied torque) is indistinguishable
from case E.

Two cases are interesting:

1) If λ = 0, solutions of equation (3) are symmetric
with respect to the Y = 0 axis. This corresponds to the
line ψ2 = 2π−ψ1 in the energy diagram of Figure 2. Mov-
ing on this line amounts to applying two opposite torques
to the o-ring. The metastable state corresponds to the
two non-trivial local minima of the energy with zero ap-
plied torque ∂E/∂ψ1,2 = 0. The actual shape of the o-ring
depends on the parameter α as shown in Figure 3 for dif-
ferent cases.

2) Beside the λ = 0 line, we find solutions which break
the symmetry with respect to the Y = 0 axis. In all cases,
ψ̇ is discontinuous at the poles because of the torques ap-
plied from outside.

Energy diagrams, such as Figure 2, depend on the
value of α. For α ≤ αc ' 0.66, we find two symmetric lo-
cal minima along the λ = 0 line. Moving away from these
two points increases the energy and work has to be done
on the system to go back to the untwisted state ψ1,2 = 0.
Solutions of the Euler equations make H stationary with
respect to all variations with the same boundary condi-
tions. For ψ1 = 2π − ψ2, we find that there exists always
a local minimum on the λ = 0 line which moves from
ψ1 = 0 for α = 0 to ψ1 = ψ2 = π when α = 1. However,
for values of α > αc(2d), moving perpendicularly off the
λ = 0 line decreases the energy, so that a torque must be
applied from outside for the state to be stable. This state
is therefore a saddle point solution in the strong torsion
regime.

In the symmetric case, λ = 0, we can study analyti-
cally how the metastable state depends on the parameter
α. The change of variable y = cosψ reduces the shape
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Fig. 4. Variations of the curvature φ̇ (solid line) and of the
torsion angle ψ (long dashed line) for the metastable state (2d
case, half o-ring).

equations to the standard form

ẏ2 =− V (y)

with V (y) =− ξ−2
0

(
y2 − 1

)
(y − a) (y − b) (4)

where a and b are two constants (b = cosψ1,2). Equation
(4) describes the motion of a particle in a potential well
V (y) with solutions varying between the zeros of V (y).
After Davis [10], the solution is given by an elliptic func-
tion

y = cos ψ =
F (u)− b
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The set (k,m), or equivalently (a, b), is determined by
the periodic boundary conditions. Since sn2

(
x, k−2

)
is pe-

riodic with period 2K[k−2], the condition for ψ to be pe-
riodic is

π
km

K[k−2]
= 2ξ0 (6)

whereK(k−2) is the modulus of the elliptic function. Since

φ is also periodic, with φ̇ = − 1
2 (a+b)+cos ψ, the condition

φ(2πR0) = φ(0)+2π together with equation (6) yields the
two constants a and b. The analytic solution is worthwile
to discuss in the two limiting cases of small and large α
regime.

1) In the small α limit, ξ0 � 1, the variations of the
torsion angle ψ are large, since the restoring force is small.
In this case, b = 1− and ψ experiences rapid variations
between its two limiting values which are almost 0 and 2π.
Since k → 1+, we have K(1/k2) → ∞ with m ' 1, and
the elliptic function is well approximated by a hyperbolic
tangent. The mechanical analog is a particle oscillating in
a double well potential at ψ = 0+ and ψ = 2π−. Figure 4
shows the variations of the curvature, φ̇, and of the torsion,
ψ, as a function of the arclength. A well-defined plateau
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separates the kink-anti-kink where the torsion experiences
a tanh-like variation.

2) In the large α regime, the elliptic function is well
approximated by a sinusoid and the domain walls can-
not be distinguished. The limiting case b = cosψ1,2 = −1
corresponds to the unstable solution where the o-ring ex-
periences a global torsion of π (α = 1). In practice the
metastable state disappears much before the strong tor-
sion regime.

Let us consider the 3d case. The deformation rate along
the tangent of the curve depends on the geometric torsion
of the neutral fibre τg as Ω3 = ψ̇+τg, where ψ is the angle
between the osculating plane (t,n) and e1. The order pa-
rameter becomes the angle θ of the helix with its normal
plane, and we are interested in computing θ as a function
of α.

We construct a variational shape with two circular arcs
joined by two helices with angle θ. Let ε be a variational
parameter so that the length of each helix is πR0ε. The
angle ψ is taken to be constant in the two circular arcs
(ψ = ±ψ0) and it varies linearly with the arclength in the
two helices so that

ψ̇ = −
πR0ε

2ψ0
;

π

2
R0(1− ε) ≤ s ≤

π

2
R0(1 + ε). (7)

The total energy is thus a function of the three varia-
tional parameters E (θ, ψ0, ε). Numerical minimization of
E gives that there exists a metastable state as long as
α ≤= αc(3d) = 0.9. In the weak coupling regime, α� 1,

one finds cos(θ) ' (α)
1/3

and the shape looks like two
half circles of radius ' R0 separated by two small straight
helices (θ ' π/2). In this limit, the width of the kink
(anti-kink) tends to zero. In the opposite limit, where α
approaches αc(3d), the two helices degenerate into two
circular arcs with θ = 0. Obviously, the aspect ratio of the
o-ring is important in this regime, since the o-ring can-
not be self-intersecting. It is interesting to note that this
model gives θ ' 1 for α = 2/3 (rubber case) with ψ0 = 0.7.
Within 5%, these are the values which are measured on a
circular o-ring of Figure 1.

To conclude this paper, we study the case where the
bend is induced by a concentration field. If ϕ denotes the
variation with respect to its average value, the free energy
decomposes into three parts. First, there is a concentra-
tion dependent intrinsic curvature c0(ϕ) = (dc0/dϕ)ϕ.
Second, there is a penalty term for the deviation with re-

spect to the mean value 1/2a
∮

ds
[
ϕ2 + ξ−2 (∇ϕ)2

]
.

A Lagrange multiplier should also be included for the con-
straint on the total number of particles (−µ

∫
dsϕ). Ne-

glecting the gradient term, we can minimize first with re-
spect to ϕ to obtain an effective o-ring model with renor-
malized coefficients. Solving this model, we go back to the
concentration field

ϕ =
µ+Aφ̇ cosψ(

dc0
dϕ

)2

+ a

(8)

so that the concentration follows the deviation of the cur-
vature. For

∮
dsϕ = 0, we compute µ and use Figure 4 to

show that ϕ is maximum at the two poles (s = 0, πR0).

In conclusion we have shown that an intrinsic curva-
ture introduces a new lengthscale and leads to non-trivial
metastable states, the simplest one being discussed in this
paper.
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